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On Tests for Uniformity: Neyman's Statistic and

Statistics Based on Gaps and Stretches

By

Herbert Solomon and Michael A. Stephens

Introduct ion.

In this paper we provide percentage points for Neyman's goodness-of-

fit statistics of order two for the uniform distribution. Recent work has

suggested that this statistic is powerful against a wide range of alterna-

tives. The statistic is a combination of the sample mean and sample

variance of the observations. The percentage points have been found by

fitting Pearson curves, following the work of F. N. David (1939) who gave

the first four moments of the Neyman statistic. We then turn our attention

to another situation concerned with sampling from a uniform distribution.

Deken (1980) has produced exact distributions and moments for the largest

gaps (spacings) and stretches (higher order spacings) among points uniformly

distributed on a unit interval. An approximation to the distribution is

also suggested by Deken. We develop the Pearson curve fit for the distri-

bution of this maximum statistic and find it is excellent over the range of

values and somewhat better than the approximation in the lower tail region.

The test statistic developed by Deken is powerful against alternatives to

the uniform distribution that are likely to produce several clusters among

the n points along the line. Deken suggests multiple comparison testing

as a motivation. Another possibility occurs for some physical phenomena,

e.g. Poisson processes, where events are registered on a line and the issue at

hand is usually whether there is uniformity which would represent one explana-

tion, or clusters of the n points which would depict another model.
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Neymants Statistic N2

Neyman (1937) suggested that any density f(x) on the interval (0,1)

can be written in the form

k
(1) f(x) - c exp{l + 6 Z ij(x)), 0 < x < 1, k - 1,2,...

where t1(x). t2(x).... are Legendre polynomials, 196 2 0' ''1ak are

parameters, and c, a function of el,@2,., is a normalizingconstanL

When 0i M 0, for all j > 1, f(x) is the uniform density f(x) = 1

written U(O,). The Legendre polynomials are orthogonal on the interval

(0,1), and, by varying k, f(x) may be made to approximate any given

alternative. As the 0 increase, the density f(x) varies smoothly

from the uniform distribution; thus the test for uniformity can be put

in the form of a test on the parameter values, i.e. a test of

k 22

0 j.nl - 0

By likelihood ratio methods, Neyman found an appropriate statistic for

testing H0. Suppose x1,x2 #...,x n  is the given random sample. For given

2
k the test statistic is Nk, calculated as follows:

(a) Calculate
n

(2) Vj v( , J ,

(b) Then

(3) Nk J 2
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In these calculations, Z (x) is best expressed in terms of y x-0.5.

For the first four polynomials

A1(x) - 2/3y; k 2 (x) - /5(6y 2-0.5);

z3 (x) - %/7(20y -3y); Z4 (x) = 3 (70y -15y 2+0.375)

2In general, H will be rejected for large values of N. Note that
0a

2 2
N1  is equivalent to x, the mean of the x . In fact N = v1 and

(12n) (x- 0.5). Then let ta be the upper tail percentage

point for N2  at significnce level a, and let Z U be the upper
1Ia au, aL

and lower tail percentage point at level a for x; we have ZaU l1-Z L,

and t2a f 12n(Z U-0.5)2 = 12n(0.5-Z aL) 2 . Thus significance points

2
for N can be found from significance points for x; a table of such

points is available for example, in Stephens (1966, Table 1). Further,

2 (x i 0.5) 2 /n 2 2

S - 0.), a form of sample variance, and so N2  is a

- 2 2
combination of both x and s . In this paper we concentrate on N2 '

Neyman showed that, on HO, the v.• are asymptotically independent,

and each is normally distributed with mean 0 and variance 1. Thus the

asymptotic null distribution of N2 is X ; for the alternative family (1)
k Xk;frteatraiefml()

2
the asymptotic distribution is noncentral Xk. David (1939) examined

2 2 2 2 2
the null distribution of NI - v and N2 

= v + v2  for finite n, by
1 1 2 1 2

calculating their moments and fitting Pearson curves, David showed that

2 220, the approximations were very good for Nk whenfor n > Xk, thhen

k - 1 or 2. The tests are consistent and asymptotically unbiased.
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Since Neyman's early work many tests for uniformity have been

developed, and the statistic has been somewhat overlooked. In that

era before computers the statistics also required much computation,

as was pointed out by David (1939). Recently, however, Locke and

Spurrier (1978) have made extensive Monte Carlo studies of various tests

2for uniformity and have shown that N2 is effective against a wide

range of alternatives. We have also shown this to be so, in an

unpuboished Monte Carlo study with some alternatives the same as,

and some different from those of Locke and Spurrier. The fact that

2N2 uses both sample mean and sample variance makes it plausible that

it will detect many types of non-uniformity, and these simple statistics

also have a natural appeal. It seems worthwhile therefore to give a

2set of upper tail percentage points for N2 , on H0 , for small values

of n. This is done in Table 1. The points are derived by fitting

Pearson curves to the first four moments given by David (1939). These

moments are as follows:

4 -32

2 -35n

704 722208
S3 =16 + -- 35035n2

15216 2203468 17946980PJ4 - 144 +----+
49n 35035n2  119119n3
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David used two moments, or three moments with a zero start to approximate

2 by Pearson curves of Type I for N12 and Type VI
2

for N2 for n - 5, 10, 20, 30, 50, 100, and concluded that these approxima-

tions gave very good results. A table of percentage points was not given, how-

ever, (it would have been very tedious to calculate at the time) and the

present Table 1 might therefore be regarded as an extension of David's

work, making use of modern capabilities. The Pearson curve approxima-

tions are based on the extensive tables of significance points produced

by Johnson, Nixon, Amos an Pearson (1963) and reproduced in Pearson and

2Hartley (1972). David showed that the asymptotic x2 approximation

will be accurate for quite small n, and Table 1 demonstrates this also.

2
The last row of percentage points is obtained from X2. Further

comments on the Neyman tests are in Pearson (1938) and David (1939).

Barton (1953) considered a slightly different class of alternatives

given by

k
f(x) - 9 etj(x) , 0 < x < 1 , k = 0,1,...

with 60  equal to 1. A restriction must now be placed on the e

to ensure that the density is always positive. The same statistics

2
N may again be used to test for uniformity against this alternative.
k
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TABLE 1
2

Upper tail percentage points for N2

N 0.5 0.75 0.8 0.9 0.95 0.975 0.99 0.995

2 1.571 2.702 3.058 4.193 5.411 6.748 8.741 10.454

3 1.492 2.685 3.069 4.292 5.594 6.998 9.041 10.749

4 1.459 2.689 3.086 4.352 5.688 7.109 9.143 10.810

5 1.442 2.696 3.102 4.393 5.745 7.172 9.190 10.827

6 1.432 2.704 3.116 4.422 5.784 7.212 9.215 10.826

7 1.425 2.710 3.126 4.445 5.812 7.239 9.227 10.815

8 1.420 2.716 3.135 4.462 5.833 7.257 9.231 10.798

9 1.416 2.721 3.143 4.476 5.849 7.272 9.235 10.787

10 1.413 2.725 3.149 4.487 5.862 7.283 9.235 10.773

12 1.409 2.731 3.159 4.505 5.883 7.300 9.237 10.755

14 1.406 2.736 3.166 4.517 5.897 7.311 9.235 10.735

16 1.403 2.740 3.172 4.527 5.908 7.319 9.233 10.720

18 1.402 2.744 3.177 4.536 5.918 7.327 9.235 10.716

20 1.400 2.746 3.181 4.542 5.925 7.332 9.234 10.706

25 1.398 2.751 3.188 4.554 5.937 7.341 9.230 10.684

30 1.396 2.755 3.193 4.562 5.947 7.348 9.230 10.677

35 1.395 2.757 3.196 4.568 5.952 7.352 9.226 10.662

40 1.394 2.759 3.199 4.573 5.958 7.357 9.230 10.666

45 1.393 2.760 3.201 4.576 5.961 7.357 9.221 10.645

50 1.392 2.762 3.203 4.579 5.964 7.360 9.223 10.646

60 1.391 2.763 3.206 4.584 5.969 7.364 9.224 10.644

80 1.390 2.766 3.209 4.589 5.974 7.367 9.218 10.627

100 1.390 2.768 3.212 4.592 5.979 7.370 9.220 10.626

1.386 2.773 3.219 4.605 5.991 7.378 9.210 10.597
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Caps and Stretches.

In an interesting paper,Deken (1980) has looked into the distribution

of gaps and stretches that arise in sampling from a uniform distribution

over the unit interval. For densities other than the uniform an

appropriate probability inverse transformation can be employed to

achieve a uniform distribution. Consider the order statistics yly 2, "'"Yn'

in a sample of size n from the uniform distribution. Define the

p-stretches zlz 2,....,n+l-p as z j yJ+p-l-yj, J = 1,...,n+l-p. The

variables z are called spacings (p - 2), or higher order spacings

(p > 2). There is an extensive literature on spacings and in some

cases this literature deals with the classical geometrical probability

problems of random coverage of the circumference of a circle by random

arcs. There is a duality between distributions related to spacings

and distributions of coverage. A recent article by Holst (1980), gives

some new results in this interesting subject as well as many references.

In some recent work on multiple comparisons, Welsh (1977), looks into

the variables z and labels them gaps for p = 2 and stretches for

p > 2. Deken's key contribution is to deal directly with the lack of inde-

pendence between successive p-stretches. This is rather formidable for

p > 2 and had led in the past to asymptotic considerations. The multiple

comparison situation is one in which asymptotic results may not be suffi-

ciently accurate and in which the number of points n may often be small.

Deken demonstrates through a recursive formulation how to derive exact

results in many cases. Specifically, he computed the exact

distribution for the maximum p-stretch for all values of p for ten or
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fewer points uniformly distributed in the unit interval. In addition to

the exact distributions, he provides formulas for moments for n- 2,3,...,l0,

p - 2,3,...,l0 and quantiles of the distribution. He also produces an

approximation based on an independence assumption for the successive

p-stretches utilizing the fact that the distribution of any individual

p-stretch is Beta when sampling is from the uniform distribution. Therefore,

an approximation to the exact distributions computed by Deken is that of the

maximum of (n+l-p) independent Beta variable.

In Table 2 quantiles are listed for several cases where each cell

lists the exact value, the Pearson curve fit, and the approximation given

by the Beta assumption. For the column where the number of points is five

and the stretch is five and similarly, where the number of points is ten and

the stretch is ten, no approximatevalues are given because we are dealing

directly with the distribution of the range. The Pearson curve fits do

extremely well over all cells, whereas the Beta approximation is only viable

for the upper tail.

From Deken's development, it appears that for n > 10, the analytical

development of moments is more feasible than producing the quantiles of

the exact distribution of the maximum p-stretches. Thus, should moments

become available for n > 10, the PC fit can be achieved rather econom, Aly

and with the knowledge that the fit will be excellent.
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TABLE 2

Percentage points for the maximum p-stretch in samples

of size n from the uniform distribution.

n-5 n-5 n-5 n-5 n-lO n-10

p-2 p-3 p-4  p-5  p=9 pu1 0

Exact .1570 .2308 .2897 .3426 .5635 .6058

P.C. .05 .1850 .2321 .2903 .3426 .5637 .6059

Approx. .1202 .2506 .3425 .6316

Exact .1917 .2811 .3525 .4161 .6176 .6632

P.C. .0 .1904 .2811 .3527 .4161 .6176 .6632

Approx. .1523 .2963 .3993 .6738

Exact .2555 .3716 .4649 .5458 .7033 .7526

P.C. .25 .2530 .3700 .4645 .5458 .7032 .7527

Approx. .2178 .3813 .5000 .7414

Exact .3340 .4754 .5914 .6862 .7878 .8377

P.C. .50 .3347 .4762 .5915 .6862 .7878 .8377

Approx. .3076 .4854 .6144 .8098

Exact .4254 .5839 .7100 .8062 .8577 .9036

P.C. .75 .4280 .5852 .7102 .8063 .8578 .9035

Approx. .4135 .5944 .7230 .8686

Exact .5218 .6832 .8024 .8878 .9069 .9455

P.C. .90 .5207 .6814 .8022 .8878 .9069 .9455

Approx. .5181 .6905 .8089 .9118

Exact .5837 .7393 .8488 .9236 .9301 .9632

P.C. .95 .5795 .7364 .8484 .9235 .9300 .9633

Approx. .5821 .7445 .8527 .9329

Exact .6983 .8311 .9159 .9673 .9621 .9845

P.C. .99 .6947 .8316 .9159 .9672 .9616 .9847

Approx. .6982 .8333 .9171 .9630

9
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